Package 'ridgregextra'

Title: Ridge Regression Parameter Estimation
Description: It is a package that provides alternative approach for finding optimum parameters of ridge regression. This package focuses on finding the ridge parameter value k which makes the variance inflation factors closest to 1, while keeping them above 1 as addressed by Michael Kutner, Christopher Nachtsheim, John Neter, William Li (2004, ISBN:978-0073108742). Moreover, the package offers end-to-end functionality to find optimum k value and presents the detailed ridge regression results. Finally it shows three sets of graphs consisting k versus variance inflation factors, regression coefficients and standard errors of them.
Authors: Filiz Karadag [aut] , Hakan Savas Sazak [aut] , Olgun Aydin [cre]
Maintainer: Olgun Aydin <[email protected]>
License: GPL (>= 3)
Version: 0.1.1
Built: 2024-11-22 02:50:29 UTC
Source: https://github.com/filizkrdg/ridgregextra

Help Index


Ridge regression results with a manually selected k value

Description

Ridge regression with a manually selected k value

Usage

ridge_reg(x, y, k)

Arguments

x

Explanatory variables (Dataframe, matrix)

y

Dependent variables (Dataframe, vector)

k

Ridge parameter

Value

A list of lists

Examples

library("mctest")
x <- Hald[,-1]
y <- Hald[,1]
k <- 0.1
ridge_reg(x,y,k)

library(isdals)
data(bodyfat)
x <- bodyfat[,-1]
y <- bodyfat[,1]
k <- 0.1
ridge_reg(x,y,k)

Ridge regression results with an automatically selected k value

Description

Ridge regression with a selected k value

Usage

ridgereg_k(x, y, a, b)

Arguments

x

Explanatory variables (Dataframe, matrix)

y

Dependent variables (Dataframe, vector)

a

Lower bound of k

b

Upper bound of k

Value

A list of lists

Examples

library("mctest")
x <- Hald[,-1]
y <- Hald[,1]
ridgereg_k(x,y,a=0,b=1)

library(isdals)
data(bodyfat)
x <- bodyfat[,-1]
y <- bodyfat[,1]
ridgereg_k(x,y,a=0,b=1)

Ridge regression tables in the range of given lower and upper bounds of k values

Description

Ridge regression tables in the range of given lower and upper bounds of k values

Usage

vif_k(x, y, a, b)

Arguments

x

Explanatory variables (Dataframe, matrix)

y

Dependent variables (Dataframe, vector)

a

Lower bound of k

b

Upper bound of k

Value

A list of lists

Examples

library("mctest")
x <- Hald[,-1]
y <- Hald[,1]
vif_k(x,y,a=0,b=1)

library(isdals)
data(bodyfat)
x <- bodyfat[,-1]
y <- bodyfat[,1]
vif_k(x,y,a=0,b=1)